JAEA-IAEA Workshop on Advanced Safeguards
Technology for the Future Nuclear Fuel Cycle
13-16 November 2007, Ricotti, Tokai, Japan

Development of Analytical Techniques for Safeguards Environmental Samples at JAEA as IAEA Network Analytical Laboratory

Research Group for Analytical Science Nuclear Science and Energy Directorate Japan Atomic Energy Agency

Contents

- Introduction of safeguards environmental sample analysis (ESA)
 - Objective of ESA in safeguards
 - Technique of ESA
 - Bulk analysis
 - Particle analysis (SIMS method)
 - Particle analysis (FT-TIMS method)
- **♦** Milestone
- Introduction of CLEAR facility

Introduction

- Suspicion for North Korea and Iraq in early 1990s
- ◆93+2 Programme to strengthen the international safeguards system
 - Introduction of environmental sample analysis
 - Undeclared nuclear activities
 - Undeclared nuclear materials

Environmental sample

Cotton cloth $(10x10 cm^2)$

Cellulose $(2.5 \text{cm} \phi)$

Wipe wall and floor in a nuclear facility

For example, looking for

High enrichment uranium in enrichment plant Weapon grade plutonium in R&D facility

Isotope ratio of U & Pu

Laboratory

CLEAR

- Clean room lab.
- Bulk analysis
- Particle analysis
- Non-radioactive sample

♦ NUCEF

- Radiochemical lab.
- Bulk analysis
- Radioactive sample

Environmental sample analysis

Cotton cloth (10x10 cm²)

Bulk Analysis

Ashing

Acid

Acidic Digestion

DL for Pu : $\sim 10 \text{ fg } (10^{-15} \text{ g})$

Chemical Separation

To remove matrix elements for accurate isotope ratio measurement

ISO Class 5 Clean room

Chemical separation

- ●15M HNO₃ & Dry up (3 times)
- ●9.5M HCl & Dry up
- ●1M HCI + 3M NH₂OH•HCI
- Standing for 60 min.
- Dry up slowly
- ●9MHCI + 0.2M HNO₃

Isotope ratio measurement

0.32M HNO₃ Solution 1,800 cps / (pg/ml) NU:5 ~ 800 pg/ml(ppt)

Double focus ICP-MS: ELEMENT1

Ion detector: SEM Resolution (M/ Δ M)= 300

Scan mode: E-Scan

Bulk analysis (Radioactive sample)

Particle analysis

SIMS method (Routinely used)

Particle recovery (Vacuum impactor)

Particles collected on planchet

SIMS

Milestones

- ◆ 2002 November Review at CLEAR
 - Two IAEA experts visited JAEA
 - Analytical results
 - Facility performance(CLEAR/NUCEF)
 - QA/QC
- 2003 January Qualification to IAEA NWAL
- ◆ 2003 February First analysis of domestic samples
- **2004 January** NWAL contract with IAEA
- ◆ 2004 February First analysis of IAEA samples

Sample analysis

28 Swipes/y (Average 2005-2006)

Particle: 33 Swipes/y (Average 2004-2006)

Desolvation module

Scott-type spray chamber Sensitivity: 1.8 Mcps / ppb ²³⁸U

Bulk analysis

Over 7 times improvement!!

Apex High-efficiency inlet system

Sensitivity: 13 Mcps / ppb ²³⁸U

http://www.elementalscientific.com/products/apex.asp

Pick-up SIMS method

Particles pick up

Particle recovery (Vacuum impactor)

Scanning electron microscopy (SEM)

SIMS

Particles pick up and transfer

Results of pick-up SIMS

FT-TIMS method

Collect particles on filter

Neutron irradiation

Prepare irradiation sample

Etching

Accurate method A lot of time to measure

TIMS

XRF for screening

Swipe sample

Uranium amount

Impurity measurement

Pb, Fe etc.

Results of XRF measurement

CLEAR

CLEAR – Floor plan

Cleanness class is defined as maximum number of particles $(> 0.5 \mu \text{ m}) \text{ in } 1 \text{ ft}^3.$ No cleanness-controlled rooms, e.g. normal office rooms, sometimes contain the particle more than one million.

Air flow and pressure control

